
Boundary Conditions in SIMION

Giglio Eric
Centre de Recherche sur les Ions, les Matériaux et la
Photonique (CIMAP), F-14000, Caen

giglio@ganil.fr

Simion user meeting, GANIL, 11/06/2015

Introduction

By pressing the refine button, SIMION calculates the
electric potential all over the empty space inside a given
box, which may contain electrodes at a given voltage,
by solving the Laplace equation

∇2V (~r) = 0 . (1)

For the solution to exist and to be unique, the potential
must fulfil certain conditions on the boundaries enclos-
ing that space. Indeed, boundary conditions are what
constrain the solution to the Laplace equation, which
otherwise has an infinite number of solutions 1. The
boundary conditions on the Laplace equation typically
take the form of specifying the values of potential or its
derivative over the enclosing surface. Theorems, that
tell us what types of boundary conditions give unique
solutions to such equations are called uniqueness the-
orems.

Uniqueness Theorems
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Let us imagine that we have discovered a solution
to the Laplace equation subject to certain boundary
conditions on S by following some procedure. Hav-
ing found one solution, we would like to know whether
this solution is unique. If yes, then the problem is com-
pletely solved.

First uniqueness theorem: The solution to the
Laplace Equation in some volume is uniquely deter-
mined if the potential voltage is specified on the bound-
ary surface. This is the so-called Dirichlet Boundary
Conditions . Mathematically, this writes:

∇2V (~r) = 0 ~r ∈ Ω (2)

V (~r) = f(~r) ~r ∈ S (3)

1extracted from SIMION 8.1 Supplemental Documentation,
http://simion.com/info/

where V stands for the electric potential in the volume
Ω and f for the specified potential on the boundary S.

Second uniqueness theorem The Laplace equa-
tion still has a unique solution if part of this boundary
is instead defined by a Neumann Boundary Con-
dition, in which the normal derivative of the potential
(not the potential itself) on the boundary is specified.
Let the boundary S be divided into two pieces S1 and
S2, such that S = S1 + S2. The second uniqueness
theorem allows then to write:

∇2V (~r) = 0 ~r ∈ Ω (4)

V (~r) = f(~r) ~r ∈ S1 (5)

∂V

∂n
(~r) = g(~r) ~r ∈ S2 (6)

where ∂V
∂n stands for the normal derivative of the po-

tential pointing outside. Thus on S1, the boundary
condition (BC) is given by Dirichlet boundary condi-
tion, while on S2 it is given by the Neumann one. It is
important to understand here that at a given bound-
ary, let us say S1, one cannot use at the same time
both Dirichlet and Neumann BC. They are mutually
exclusive. An exception are Robin BC for which the
boundaries are instead defined by a linear combination
of the Neumann and Dirichlet BC. This case however
does not occur in electrostatics and will no longer be
discussed here.

Integral Formulation of the
Laplace Equation

In order to understand why the solution is uniquely
defined by Dirichlet or Neumann BC, we can look at
the integral formulation of the Laplace equation. To
do so, we first introduce the Green function defined as

G(~r, ~r′) =
1

|~r − ~r′|
, ∇2

r′G(~r, ~r′) = −4πδ(~r, ~r′) (7)

It represents the Coulomb potential of a discrete par-
ticle at the position ~r′. Then we introduce the Green
theorem which links a volume integral containing the
Laplace operator to a surface integral over the bound-
aries of the volume, namely∫

Ω

(G∇2V −V∇2G)d3r =

∫
S

(G~∇V −V ~∇G) ·~n ds (8)
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Injecting equation (1) and (7) into (8) yields eventually
the integral formulation of the Laplace equation

4πV (~r) =

∫
S

(G
∂V

∂n
− V ∂G

∂n
) · ~n ds ~r ∈ Ω/S . (9)

This equation just refers to the potential and its nor-
mal derivative on the surface to define the potential
inside the volume. This rather surprising result is not
a solution to a problem with boundary conditions as
given by (2,3) or (4-6), but a simple integral formula-
tion, because an arbitrary specification of V and ∂V

∂n on
the surface (Cauchy boundary condition) would over-
determine the problem and yield no (or only trivial)
solutions. For completeness, let me specify that by
choosing a different Green function than in (7), namely
one that is zero on the surface S,

G(~r, ~r′) = 0 ~r ∈ S, ∇2
r′G(~r, ~r′) = −4πδ(~r, ~r′) ,

(10)
then equation (10) can be used to solve the Laplace
equation with Dirichlet boundary conditions. However,
finding G, satisfying the above conditions for an arbi-
trary boundary shape, is very difficult. This method is
mainly used for very simple geometries. The integral
formulation however shows that a mutually exclusive
mix of Dirichlet and Neumann boundary conditions
uniquely defines the potential inside a given volume.

Boundary Conditions at the edges
of the grid box in SIMION

In SIMION, the grid points on the boundaries (edges)
of the volume box need special care. If all those points
are well defined electrodes, than the Laplace problem
is fully defined and can be uniquely solved by SIMION.
However, non-electrode points on box edges are treated
by default as zero Neumann BC, regardless if mirror-
ing is defined. A zero Neumann BC imposes the con-
straint that the directional derivative normal to some
boundary surface ∂V

∂n is zero. There are a number of
occasions where zero Neumann BC can occur in a sys-
tem. Zero Neumann BC commonly occur over a plane
of mirror symmetry, which is to say that the poten-
tials at all pairs of points mirrored across a plane are
identical. For example, an x = 0 mirror plane implies
V (x, y, z) ≡ V (−x, y, z) for all points (x, y, z) in space.
The derivative might not exist on points on the mirror
plane that also happen to have Dirichlet BC because
there the potential gradient (negative field) may be dis-
continuous 2.

In order to illustrate the effect of non-electrode edge
points on the Laplace solution, we give several exam-
ples which may occur frequently in realistic studies.
We start with a finite wire hold at V0, centred on the
symmetry axis of a cylindrical box, for which the left
surface disc is an electrode hold at zero potential, as
shown in the inset of figure 1. The other edge points are
not defined. SIMION replaces then the non-electrode

2Extracted from SIMION 8.1 Supplementary Documentation
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Figure 1: Finite wire at given potential V0 inside a
cylindrical box with mixed Dirichlet (black) and Neu-
mann (green) boundary conditions. Red lines are
equipotentials. At the zero Neumann boundary sur-
faces, the equipotentials run normal to surface, while
they are tangent to the Dirichlet boundary surface.

points at the edge by a zero Neumann BC. Figure 1
gives a cut through a symmetry plane containing the
symmetry axis. The left black border stands for the
zero potential Dirichlet BC, while the green borders
are zero Neumann BC. The red curves are equipoten-
tials. Interestingly, for all boundary surfaces defined
by zero Neumann BC, the equipotentials run normal
to surface, while they are tangent to boundary surfaces
defined by Dirichlet BC. This property allows to recog-
nize immediately what boundary conditions have been
used at the boundary surfaces of the grid box for a given
solution.
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Figure 2: Finite wire at given potential V0 inside a
cylindrical box. Left ; with zero Neumann boundary
conditions (green border). Right ; with zero Dirich-
let boundary condition (black border). Red curves are
equipotentials.

In special cases, not defining the potential on the
edges, may lead to unexpected (wrong) solutions. This
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is illustrate by figure 2, which again represents a wire
hold at a given potential. For the left panel, the edge
points were not defined. One would expect that the
potential decreases like 1/r. Instead, SIMION replaces
the non-electrode edge points by a zero Neumann con-
dition, resulting into a constant potential all over the
space. To avoid this, Dirichlet BC must be given by
defining explicitly the potential at the boundary of the
box (right panel). The 1/r behaviour can be recovered
approximately by using a very large box with zero po-
tential at the edges.

Another typical example which may occur frequently
is a set of parallel plates, with one being grounded and
the other hold at a given potential say 1V, as shown in
figure 3. One may assume here that the potential at the
boundaries of the box do not need to be given, as the
electric field in between the plates is largely unaffected
by the surroundings. However, this is true only if the
distance between the plates is small compared to the
dimension of the box. Otherwise, the equipotentials
at the entrance of the two plates. are affected by the
boundary condition at the edges of the box. This is
highlighted by comparing in figure 3 the left panel using
Neumann BC to the right one, using Dirichlet BC. The
equipotentials at the entrance (and exit) are clearly
different and may affect ion trajectories.

2 plates in 3D box
Neuman vs Dirichlet 
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Figure 3: Two plates in a cubic box. Left ; with zero
Neumann boundary conditions (green border). Right ;
with zero Dirichlet boundary condition (black border).
Red curves are equipotentials.

Conclusion

The paper tries to illustrate the importance of prop-
erly defining the boundaries conditions on the surface
enclosing the volume of interest. If parts of the sur-
face are non-electrodes points, then zero Neumann BC
are assumed by SIMION for these points. Now, Zero
Neumann BC define mirror planes. If this was not
the intention of the user, than the solution obtained
by SIMION may be not the expected one and lead to
inaccurate simulations.
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