
SIMION’s Simplex optimizer applied to electrode’s
potential and geometry

Pierre Chauveau
Ganil

pierre.chauveau@ganil.fr

Simion user meeting, GANIL, 11/06/2015

Introduction

This short paper describes the SIMION 8.1 built-in
Nelder-Mead (or downhill simplex) optimization rou-
tine and its use to optimize the potentials applied to
a given set of electrodes, the geometrical parameters
(dimensions, position) of those electrodes or the beam
conditions. This method can find a close to optimal
solution even if there are several local minima in the
optimization goal function, which is likely in many-
electrodes systems. A simple system of a 90 electro-
static deflector composed of two bended blades and
equipped with two Einzel lenses (Fig.1) will be studied
as an example throughout this paper.

Figure 1: SIMION geometry of the blade-deflector

The Nelder-Mead algorithm

This algorithm is derived from the Simplex opti-
mization method, the main difference being that
Nelder-Mead can be used with non linear problems.
This algorithm consists in minimizing the size of a
polygon in the n-dimensions space of parameters to
converge on a certain set of parameters. For n input
parameters (the potential of an electrode, the diameter
of a rod . . .), one should choose n+1 sets of parameters
S1, . . . , Sn+1, so that the vectors (S1S2, . . . , S1Sn+1)
form a base of the space of parameters.

Tip: the SIMION Nelder-Mead optimizer will al-
ways require 2n parameters : x1, . . . , xn,∆x1, . . . ,∆xn
and construct n + 1 sets {(x1, x2, . . . , xn), (x1 +
∆x1, x2, . . . , xn), (x1, x2 + ∆x2, . . . , xn), . . .}.

The algorithm follow those steps:

1. Sort S0, . . . , Sn+1 by increasing value of the opti-
mization goal function f . Sn+1 is then the least
optimal solution.

2. Calculate S0 the barycenter of S1, . . . , Sn.

3. Calculate Sr = S0 + (S0 − Sn+1) the reflection of
Sn+1 with respect to S0.

4. If f(Sr) < f(S1) (best set so far), calculate Se =
S0 + 2(S0 − Sn+1), replace Sn+1 with the best of
Sr and Se and restart at step 1.

5. Else if f(S1) < f(Sr) < f(Sn), just replace Sn+1

with Sr and restart at step 1.

6. Else if Sr > Sn, calculate Sc = S0 + 1
2 (S0−Sn+1).

If Sc < Sn+1 replace Sn+1 with Sc and restart at
step 1.

7. Else replace all Si, i > 1 with S1 + 1
2 (Si − S1).

Tip: in SIMION the algorithm stops when all the
sets fit within a sphere of a certain radius.

Potential optimization

I. The potentials: first the user must chose the
potentials to optimize. In the case of our deflector
we chose the potential of the outer deflecting blade
and the potentials of the middle electrode of the two
Einzel lenses, all the other electrodes being grounded.

II. The optimization goal function: if this func-
tion depends on the output beam (transmission,
emittance gain, beam position, direction . . .), one
should import the file testplanelib.lua located in
SIMION directory/examples/test plane in the current
optimization folder and use it to determine beam
characteristics on a stop plane (see first code segment
below). In the case of our deflector, we will try to
maximize the transmission rate and minimize the angle
between the beam direction and the line axis as well as
the distance between the beam mean position and the

1

line axis. The goal function will be calculated as s =
A∗(1−Tr)a+B∗|θbeam−θaxis|b+C∗|Xbeam−Xaxis|c,
with A, a, B, b, C and c being coefficient to adjust
according to the importance given to each parameter
(see second code segment). This part is quite arbitrary
and the goal function should therefore be chosen with
caution. In our example, the starting potential of the
two Einzel lenses and the deflecting blade were 1200V,
1200V and 545V respectively. For this set the value
of the goal function was 25.9411 (no physical meaning).

Tip: in case of ion crash, the position and speed of
this ion will be stored in memory the same way as if it
reached a stop plane. This can make the goal function
rise but also decrease. In the last case, the ”optimal
solution” in terms of goal function could be to crash a
part of the beam or even all of it on the walls. Thus
if maximal transmission is wanted, the goal function
should never be created in a way that a crashed beam
leads to a better result.

III. The optimizer: it has to be declared before
the potentials in the lua file. Flym, initialize run or
init p value (or even fast adjust if all the potentials
are time dependent) are viable segments to declare the
optimizer. As stated before the optimizer will need a
set of potential Vi, a set of variations ∆Vi and a radius
of convergence r0 (see third code segment). Most of
the time this radius can be chosen small (∼ 10−5Vi)
as for short times of flight the optimization will be
fast and for long times of flight (traps, cyclotrons . . .)
a high precision will be needed. The optimizer will
keep working throughout several runs, until the n + 1
last sets fits within a sphere of radius r0. At the end
of each run (in terminate run) or at the beginning of
the next one, the potentials to apply to the electrodes
should be changed to those given by the optimizer
(still in third code segment). Finally, the optimizer
will not make the simulation re-run by itself. Stopping
and re-running the simulation as well as feeding the
optimizer with the goal function have to be done at
each step within the lua code.

Tip: the variables ”start”, ”step” and ”minradius”
are reserved by the optimizer and should not be used
for another purpose (a loop for example) as it might
cause the code to crash.

IV. Choice of the starting point: the user should
perform a few runs without optimizing to find a
working set (without all ions crashing on the walls)
and to find out the sensitivity of each parameter.
When choosing the set of variations ∆Vi, one should
keep in mind that a too small variation will slow down
the beginning of the optimization, but a large one
could induce a dramatic voltage variation causing the
beam to crash on the walls. Generally, a few tries
allow us to find a compromise.

Tip: if the user want to explore a certain parameter in
a certain direction (increase/decrease), he can ”force”
the optimizer to start in this direction by putting a
high variation on this parameter and low variations
on the others.

V. The Input beam: using a gaussian beam
would be nice to optimize our system under realistic
conditions. Unfortunately, the gaussian beam gener-
ated in SIMION are random beam with a gaussian
distribution of probability, which means that each
run will have a slightly different input beam. This
introduce chance into the optimization and threaten
its repeatability. The user can instead generate a
gaussian beam and save it to use it in each run or
simply define arithmetic sequences for positions/an-
gles of the ions so that the emittance of this beam
is roughly the same as for an equivalent gaussian beam.

Tip: in general, there should be no randomly generated
parameters inside the optimization loop. Everything
not directly modified by the optimizer should remain
unchanged. The only exception would be if the user
want to introduce simulated annealing (not described
in this paper).

VI. Multiple optimizations and randomizing:
with increasing complexity, the number and density
of local minima increase as well. The chance of the
optimizer converging to a non absolute minimum
can be high with 3 or more potentials, especially
with small initial variations. The simplest method
to find a close to absolute minimum is to finish an
optimization, randomize the optimal set within a
certain range (±1% works fine) and to restart a
new optimization with these new parameters (see
fourth code segment). Here the randomization is done
between two optimization and not within one, it does
not affects the repeatability of the result. The process
can be repeated as many times as needed.

Applied to our example the potential optimization
made the goal function drop to 0.8322, with a preci-
sion in beam position 6 times better and a precision
in beam direction more than 100 times better than
before the optimization. The MR-ToF-MS PILGRIM
(Fig.2) and its injection has been optimized with this
method. The resolving power of this mass spectrom-
eter has vastly increased from a few thousand in the
earliest configurations to more than 520.103 nowadays.

Geometric optimization

All the previous statements also apply to geometry
optimization. The major difference is that the voltage
change is very fast, while changing geometry requires
to build new potential maps, which can be in the range
of seconds (simple 2D files) to hours (3D geometry

2

Figure 2: The MR-ToF-MS PILGRIM : a linear ion
trap with high resolving power.

with many electrodes or fine mapping). Therefore, it
might not be the best solution to optimize potentials
and geometric parameters in the same loop as the
laters would slow down the formers (the opposite is in
principle possible too but is extremely uncommon).

I. The gem file: the parameters to optimize have to
be declared in the header and called within the file.
The code shown in the fifth segment generate the two
blades of the deflector. In the main lua file, a routine
must pass these parameters to the gem file, generate
a potential array (PA) and refine it (see sixth code
segment).

Tip: the user has to make sure he takes advantage
of every symmetry available, as each symmetry not
stated in the gem file will multiply the refining time by
two.

Tip: the option surface = fractional should be checked
in the potential array declaration in the gem file (see
fifth code segment) to be able to deal with lengths which
are not an integer multiple of the binning.

IIa. Geometry sweep: a first simple way to make
a pseudo optimization is to choose one geometric
parameter and to change it following an arithmetic
sequence. A full voltage optimization should be made
between each change of geometry. At the end of each
optimization, the potentials should be reset. The
user can sweep each geometric parameter and then,
looking at the sensitivity of the goal function to each
parameter, can decide which one should be modified
to minimize this function. This method uses no proper
algorithm (no optimizer) but has been proven effective
on a multi-directions deflector developed at GANIL.
It is merely a more ”user-friendly” way to manually
optimize the geometry.

OR

IIb. Dual simplex: it is possible to use two intricated
simplex optimizers on both the potentials and the
geometry. For each step of the geometry optimization,
one can perform a full potential optimization. This
method is slower than the previous one as there are
more geometry refines. Nevertheless, this method puts

an actual optimizer on the geometry and the results
are likely to be better.

OR

IIc. Unique simplex: we can also apply one sim-
plex algorithm to both the geometry and the poten-
tials. This would probably help to converge faster to
a local minimum in terms of iterations, but not neces-
sarily in terms of computation time. One should keep
in mind that the refining time induced by a change of
geometry can be much longer than the time needed to
perform a full potential optimization in the case of a
fine 3D geometry. With a unique simplex solution, a
new geometry would have to be refined on each step of
the optimization, potentially leading to longer compu-
tation time than the former dual simplex solution.

III Comparison: if a high precision is wanted regard-
less of the computation time, methods b or c would
be the best choice. It is also possible to apply the
randomize method at the end of those optimizations
on both the potentials and the geometry. Method a is
faster, simpler though less precise, and allows the user
to ”map” the geometric parameter space and possibly
find several good configurations, which give us some
degrees of freedom for the following engineering phase.

In method a and b, it should be decided what to do
with the potentials after changing the geometry as
those can be retained or reset.

• If the potentials are retained, the beam will be less
likely to crash on the wall just after the geometry
change.

• If the potential are reset, the user can afford to
randomize the potential and perform several po-
tential optimization on each geometry as the po-
tential starting point for a new geometry would
not depend of a non repeatable last set of poten-
tial.

The second solution explores multiple local minima
and would be very interesting with the ”mapping”
behaviour of method a, especially for close-to-walls
beam for which the algorithm can give very different
result depending on if the beam partly crashes on the
walls or not. For method b, resetting the potentials at
each step would only allow us to map the geometric
parameter space along the optimization path (highly
irregular). Only the potentials of the last geometry
should be randomized, which can be done after the
end of the geometric optimization.

Methods b and c have been applied to our example,
making the goal function drop again to 0.0001 with a
precision in beam direction 1000 times better than with
a simple potential optimization. Method a has been
used to optimize the geometry of a 90-degree 4-ways
beam deflector (Fig.3). The goal of this optimization

3

was to bend an ion beam while conserving its proper-
ties. The output beam of the optimized deflector was
showing deviation of 0.0017◦in direction, 0.59 in time-
of-flight bunchwidth and 0.10 π.mm.mrad for an input
parallel beam.

Figure 3: A 4-ways deflector designed to bend the beam
with minimal alteration in angle, position and time-of-
flight dispersion.

Conclusion

The Nelder Mead algorithm is a very powerful tool
which can save time and enhance a lot the quality of
the design in a pre-engineering phase. Finding the ab-
solute minimum is not guaranteed but finding several
close-to absolute local minima is. This algorithm can
be used to optimize potentials, geometric parameters,
beam shape, and pretty much everything that the user
can think of, as long as he pays enough attention to
the creation of the goal function. Cross optimizations
are also possible and give good results. Finally the
main drawback of all numerical method, the likeliness
to miss the absolute minimum, can be compensated
with this algorithm by re-run, randomize then re-run
or even simulated annealing.

4

LUA Code

Segment 1: test plane

local TP = simion.import ’testplanelib.lua ’

-- call the "create" function in the testplanelib.lua file.

-- defining the stop plane of the simulation

local test1 = TP(220,280,0, 0,1,0,

function ()

-- write tof and position to matrices

number_of_ions = number_of_ions + 1

tof[ion_number] = ion_time_of_flight

px[ion_number] = ion_px_mm

v[1][ion_number] = ion_vx_mm

v[2][ion_number] = ion_vy_mm

dx[ion_number] = 1000.*math.atan(ion_vx_mm/ion_vy_mm)

ion_splat = 1

end

)

function segment.tstep_adjust ()

test1.tstep_adjust ()

end

-- dealing with ion splats on the walls

function segment.other_actions ()

test1.other_actions ()

if ion_splat ~= 0 then

-- count ions splatted

ions_splat = ions_splat + 1

-- if ions splat somewhere in the trap

if ion_py_mm > 281 or ion_py_mm < 279 then

bad_splat = bad_splat + 1

print(bad_splat ,’splat on mirrors ’)

number_of_ions = number_of_ions + 1

-- fill missing values with some numbers

tof[ion_number] = 0.

px[ion_number] = 0.

v[1][ion_number] = 0.

v[2][ion_number] = 0.

dx[ion_number] = 0.

end

end

end

5

Segment 2: calculating the goal function

-- in : function segment.terminate_run ()

-- a bit of analysis

means [1] = Stat.array_mean(tof)

means [2] = Stat.array_mean(px)

means [3] = Stat.array_mean(v[1])

means [4] = Stat.array_mean(v[2])

means [5] = Stat.array_mean(dx)

Tr = (number_of_ions -bad_splat)/ number_of_ions

-- GOAL function

s = abs(means [2]-EL2x)*10+ abs(means [5])*10+(bad_splat/number_of_ions)*100

-- this put the calculated goal function into the optimizer.

optV:result(s)

Segment 3: setting the optimizer and changing the potentials

-- called on PA initialization to set voltages.

-- starting/refreshing the potential optimizer

function segment.init_p_values ()

if not optV then -- is first run (opt not defined)

-- Create new optimizer using current adjusted voltages.

optV = SimplexOptimizer {

start = {V2,V3,V4},

step = {step_V2 ,step_V3 ,step_V4},

minradius = 1E-1}

end

-- Initialize values for this run.

if Vopt == true then

V2 ,V3 ,V4 = optV:values ()

end

-- sets electrode voltage

adj_elect [1] = V1

adj_elect [2] = V2

adj_elect [3] = V3

adj_elect [4] = V4

end

6

Segment 4: randomizer

-- in : function segment.terminate_run ()

local Stat = require "simionx.Statistics"

-- randomizer

math.randomseed(os.time ())

local randomtable

randomtable = {}

-- defines a random number between -1 and 1

for i = 1,10 do

randomtable[i] = math.random (0 ,2000)/1000 -1

end

-- if the optimization is over randomize the last set

-- and relaunch the optimizer

if optV:running () == false then

optV = nil

if nVopt < max_optV then

nVopt = nVopt + 1

V2 = V2 + step_V2*randomtable [1]

V3 = V3 + step_V3*randomtable [2]

V4 = V4 + step_V4*randomtable [3]

optV = SimplexOptimizer{

start = {V2,V3,V4},

step = {step_V2 ,step_V3 ,step_V4},

minradius = 1E-1}

else

nVopt = nVopt + 1

end

end

sim_rerun_flym = 1

-- when set to 1, delete all trajectories from screen and memory

Segment 5: geometry file

pa_define (270,285,1,p,surface=fractional , n, e, 1., 1., 1.)

-- angle of the blades

local th = _G.th or 90.

Locate (120.,150.,0,1)

{ Elect (1)

{

Fill{

Within {Circle (0.,0., 95, 95) Box(0., 100., 100., -100.)}

Notin{Circle (0.,0., 92, 92)}

Notin{locate (0,0,0,1,0,$(th),0){box(0.,120.,120.,-120.)}}

}

}

}

Locate (120.,150.,0,1)

{ Elect (4)

{

Fill{

Within {Circle (0.,0., 108, 108) Box(0., 110., 110., -110.)}

Notin{Circle (0.,0., 105, 105)}

7

Notin{locate (0,0,0,1,0,$(th),0){box(0.,120.,120.,-120.)}}

}

}

}

Segment 6: gem file reading in lua file.

-- Loading Geometric Parameters

local function LGP(EL2x ,EL2y ,th)

-- convert GEM file to PA# file.

-- pass variable to GEM file.

_G.EL2x = EL2x

_G.EL2y = EL2y

_G.th = th

local pa = simion.open_gem(’Def2D.gem ’):to_pa ()

pa:save(’Def2D.pa#’)

pa:close()

-- reload in workbench

simion.wb.instances [1].pa:load(’Def2D.pa#’)

-- refine PA# file.

simion.wb.instances [1].pa:refine{convergence =1E-7}

print("EL2x=" .. EL2x .. ", EL2y=" .. EL2y .. ", th=" .. th)

end

8

