ICP-Mass Spectrometer

New Mass Spectrometers

The main issue: sequential vs. simultaneous

Scanning, peak hopping are sequential
Like viewing a photo through a peephole

One pixel at a time
Other parts of photo are invisible

Even worse: viewing a movie through a peephole

 The most important parts always seem to be where you are NOT looking!

Concept: Electronic Photoplate

- Truly simultaneous
 High spatial resolution
 Fast recording
 Direct integration
- Broad dynamic range
- Linear
- Stable; simple storage
 - Immediate readout

SSMS photoplate courtesy of D.W. Koppenaal

Mattauch-Herzog Mass Spectrograph

QuickTime[™] and a Cinepak decompressor are needed to see this picture.

New Multichannel Detector

Faraday-strip detection

- One count per ion (no amplification)
- No thermionic emission
- No dynode statistics
- No dependence on ion mass
- Continuous integration and random access of m/z
- Nondestructive or destructive readout option
 - Extended dynamic range; repetitive read

FPC-128 Multichannel Detector

Data Acquisition

"Fingerboard"

Channels

FPC-128 Installed in MHMS

FPC-128

Power Supplies

The wiring is: Red and Orange, +5.0VDC. Green to - post. Nothing to ground. Limit but leave it under voltage control. Black to -5.0VDC, matching green to + post, Nothing to ground. Limit the current to it voltage control.

the ground. Limit the current to 0.1

While to (*) and Black to (\cdot) on the other supply, nothing to ground, 1.75 Amp max our current, maybe 0.5 amp and see whether the noise in the detector decreases; or feel th cools. Then pump down.

ICP-MHMS-**FPC**

FPC-128

ICP

0

0

O

Fixed Pattern Noise

Improved Resolution

Simultaneous Isotope monitoring Mass Resolution

--- ²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb

²⁰³**T**. ²⁰⁵**T**

Limits of Detection (pptr)

Element	FPC	SEM	Element	FPC	SEM
Li	0.97	0.21	Y	3.0	0.12
Be	2.4	1.5	Мо	1.1	0.073
Mg	0.24	0.20	Ag	1.7	0.055
Al	0.44	0.25	Cd	0.23	0.026
V	7.1	0.44	In	0.54	0.10
Cr	3.6	0.20	Sn	0.49	0.23
Mn	0.66	0.23	Sb	7.2	0.18
Fe	0.084	0.25	Ba	0.74	0.17
Co	0.53	0.43	La	2.4	0.42
Ni	1.1	0.49	Ce	1.8	0.14
Cu	0.17	0.33	Но	0.60	1.2
Zn	0.35	0.44	W	0.74	0.63
Ga	0.71	0.16	Ir	0.51	0.89
As	8.6	2.6	Tl	1.1	0.11
Se	1.3	3.0	Bi	0.91	0.22
Sr	1.3	0.11	U	1.4	15

FPC ⇒31-channel Focal-plane camera; SEM ⇒slit + single-channel electron multiplier

Elemental Analysis with the FPC Array Detector: Limits of Detection (ICP source)

²⁰⁹ Bi	
²⁰³ TI	
¹⁹³ lr	
¹⁸⁶ W	Limits of detection
¹⁶⁵ Ho	
¹¹⁹ Sn	in the sub-part per
¹¹ Cd	
¹⁰⁰ Mo	trillion level for most
⁸⁸ Sr	
⁵⁵Mn	elements
⁵² Cr	
51 V	
48	

Values determined using continuous sample introduction via an ultrasonic nebulizer- 10 s integration time

20

18 165

119 111

Isotope Ratio Accuracy (% Error)* Isotope Ratio **FPC-128** FPC-31 4.3 ⁵⁸Ni/⁶⁰Ni 2.1 88Sr/86Sr33 14 7.3 ¹⁰⁰Mo/97Mo 6.6 $^{114}Cd/^{112}Cd$ 1.8 2.1 0.43 $^{120}Sn/^{118}Sn$ 2.0 121 Sb/ 123 Sb 25 2.6184 W / 186 W10 3.5 *No correction for mass bias 0(085 5.0 ¹⁹³Ir/¹⁹¹Ir

Isotope Ratio Accuracy (% Error)* Isotope Ratio **FPC-128** FPC-31 4.3 ⁵⁸Ni/⁶⁰Ni 2.1 88Sr/86Sr33 14 7.3 ¹⁰⁰Mo/97Mo 6.6 $^{114}Cd/^{112}Cd$ 1.8 2.1 0.43 $^{120}Sn/^{118}Sn$ 2.0 121 Sb/ 123 Sb 25 2.6184 W / 186 W10 3.5 *No correction for mass bias 0(085 5.0 ¹⁹³Ir/¹⁹¹Ir

Error

Isotope Ratio	Uncorrected	Bias Corrected
⁸⁸ Sr/ ⁸⁶ Sr	14%	8%
¹⁰⁰ Mo/ ⁹⁷ Mo	11%	3%
¹¹⁴ Cd/ ¹¹² Cd	4%	0.8%
$^{120}Sn/^{118}Sn$	5%	0.4%
¹²¹ Sb/ ¹²³ Sb	5%	0.7%
184 W/186 W	4%	1%
¹⁹³ Ir/ ¹⁹¹ Ir	3%	0.03%

Isotope-Ratio Precision

Representation

Signal (ADU)

Isotope Ratio Precision

Elemental Analysis with the FPC Array **Detector: Linear Dynamic Range**

Where speed & simultaneous measurement really matter

High-precision isotope ratios
Optimal internal standardization
Situations where the signal shape is critical – Flow injection

- Electrothermal (carbon-furnace) vaporization

Time-varying signals (e.g. LC, GC, CE)

Modulation methods

Fast transients (e.g. laser ablation)

Where speed & simultaneous measurement really matter

High-precision isotope ratios
Optimal internal standardization
Situations where the signal shape is critical – Flow injection

- Electrothermal (carbon-furnace) vaporization

Time-varying signals (e.g. LC, GC, CE)

Modulation methods

Fast transients (e.g. laser ablation)

ETV-ICP-ADAMS

Electrothermal Vaporization

Temporal Separation of Isobaric Interferences

Elimination of Isobaric Overlaps Through Temperature Program

Necessary m/z Resolving Power: ~330,000

ETV Limits of Detection (pptr)

Isotope	FPC	SEM	Isotope	FPC	SEM	
V-51	7	0.4	S n-120	0.5	0.2	10 s Integration
Cr-53	4	0.2	Sb-123	7	0.2	Time
Mn-55	0.7	0.2	Ba-138	0.7	0.2	FPC ⇒Focal-
Co-59	0.5	0.4	Ho-165	0.6	1	plane camera
Ni-60	1	0.5	W-186	0.7	0.6	SEM ⇒ Single
Zn-66	0.4	0.4	Ir-193	0.5	0.9	channel Secondary Electron Multiplier
Sr-88	1	0.1	T1-203	1	0.1	
Ag-107	2	0.06	Bi-209	0.9	0.2	
Cd-114	0.2	0.03	U-238	1	20	

ETV-ICP-ADAMS

1 ppm Sr and 10 ppb Y 2 s integration time

> All pixels at low gain (Pixels collecting ⁸⁸Sr signals saturate at high gain)

Signal for Y collected at high gain

Where speed & simultaneity really matter

High-precision isotope ratios **Optimal internal standardization** Situations where the signal shape is critical - Flow injection - Electrothermal vaporization <u>Time-varying signals (e.g. LC, GC, CE)</u> Modulation methods Fast transients (e.g. laser ablation)

Laser Ablation ICP-ADAMS Setup

LALODs – Steady state, single shot

Element	Steady State (ng/g)	Single Shot (fg)	Element	Steady State (ng/g)	Single Shot (fg)
В	31	160	Sr	342	1770
Mn	51	261	Ag	15	76
Fe	36	186	Au	36	188
Со	41	210	TI	10	50
Ni	41	216	Pb	9	46
Cu	31	163	Th	233	1200
Rb	112	577	U	53	272

Laser Ablation ICP-ADAMS Shot-to-Shot Reproducibility

Laser Ablation Precision

100

0

53

NIST 1359B – Copper on Brass

4-5nm depth resolution per pulse

m/z

63CU

65,

Cu

Where speed & simultaneity really matter

High-precision isotope ratios **Optimal internal standardization** Situations where the signal shape is critical - Flow injection - Electrothermal vaporization <u>Time-varying signals (e.g. LC, GC, CE)</u> Modulation methods

Fast transients (e.g. in situ laser ablation)

Chromatography with ICP-ADAMS

GC, LC, CE being pursued

Lanthanides by LC-ICP-ADAMS

