Ion Sources

Some characteristics of ion sources (especially in high precision work):

- It should have high efficiency in generating ions of the element of interest (or a range of elements).
- All of the ions should have the same energy.
- It should produce an ion beam with low divergence.
- The ions should be the same charge (preferably +1 for positive ions or -1 for negative ions) so we separate by mass and not m/q.
- The ion beam should be stable.
- The ion beam should have isotopic ratios the same as the sample.

Thermal Ionization MS

Advantages

Extremely Stable

- Generally less prone to isotopic fractionation effects than other sources
- Thermalized ions (narrow energy range)

Disadvantages

- Complicated sample preparation
- Incomplete isotope (elemental) coverage
 - Inconsistent positive or negative ionization efficiencies across periodic table

Inductively Coupled Plasma MS

Advantages

- High sensitivity
- Nearly complete isotope coverage
- Liquid, solid or gas samples
- Short analysis times
- Less "art"

Disadvantages

- Isobaric interferences
- Relatively noisy
- Wide ion energy spread
- Inefficient
- Spectral complexity

So what is the ICP?

What equipment does it require?
How does it operate?
What are its features?
How does it work with MS?

Basic ICP Instrument

Inductively Coupled Plasma - Atomic Emission Spectrometry (ICP-AES)

Nebulizer

Types of ICP Nebulizers

Concentric pneumatic
Cross-flow pneumatic
Ultrasonic (high sensitivity)
High-solids (V-groove, Babington, etc.)

Types of ICP Spray Chambers

Scott-type
High-efficiency
Cyclonic
Desolvating

The Inductively Coupled Plasma

A plasma is a hot, partially ionized gas.

- The ICP is an argon-based, radio frequency plasma.
- The input rf frequency is either 27 or 40 MHz at powers from 1 to 2 kW.
- The plasma is formed and contained in a three tube quartz touch.
- The temperature in the central analyte channel ranges from about 6000 to 8000° K.
- At these temperatures most elements are largely atomized and ionized

The ICP Torch and Plasma

THE STEPS

THE STEPS

ICP torch, nebulizer, spray chamber

Inductively Coupled Plasma (ICP)

Mass Spectrometer

Inductively Coupled Plasma -Mass Spectrometry

ElmerSCIEX

ICP-MS Interface Cones

Supersonic Expansion

Consequences of Expansion

Small ions

$\frac{KE = 0.5 \text{ MV}^2}{\text{So } KE_{M^+} = kM^+}$

Large ions

KE

Plasma Offset (Rectification)

Plasma Offset (Rectification)

Ion Energies Depend on Mass

Ion Currents in ICP-MS

Spectral Characteristics of ICP-MS

Basic Background Species

- argon, water, and air.
- N₂⁺, Ar⁺, ArO⁺, Ar₂⁺
- Interelement Spectral Overlaps
 - isobaric overlaps.
 - element oxides and hydroxides.
- Matrix Induced Spectral Overlaps
 - chlorine and sulfur based species.
 - ClO⁺, SO₂⁺
- Argon Matrix Related Species
 - ArNa⁺, ArCl⁺

ICP-MS Background: 5% HCl

Background Spectra for 5 % Hydrochloric Acid

ICP-MS Background: 5% H₂SO₄

Oxide and Hydroxide Species

Problems Caused by Oxides

- spectral interferences.
- can result in the implementation of inappropriate isobaric corrections.

Oxides Formed From

- plasma gases.
- air entrainment.
- sample solvent.
- matrix components of the sample.
- the sought-for-elements in the sample.

Variables Affecting Oxide Levels

Oxide Levels Depend On:

- injector gas flow rate.
- foward power.
- sampler skimmer spacing.
- sampler orfice size.
- plasma gas composition.
- aerosol processing.
- solvent load.
- oxygen level.

All these experimental variables can be used, to some extent, to control oxide levels in ICP-MS.

Matrix Induced Signal Changes

- A high concentration of a concomitant:
- generally, suppression of the analyte signal is observed.
- the suppression is more serious with heavier matrix elements.
- light analytes are more seriously affected.
- the effects may be minimized by:
 - reducing the nebulizer flow rate.
 - using an internal standard.
 - using dilute solutions.

Matrix Effects in ICP-MS

ICP-MS Options for Isotope Ratios Multi-collector sector-field spectrometer - Offered by Thermo (Neptune), GV, and Nu - Isotope-ratio precision ~0.002% rsd (20 ppm) Time-of-flight mass spectrometer – Leco & GBC - Isotope-ratio precision ~0.05% rsd analog - Isotope-ratio precision ~0.01% rsd counting Array-detector sector field - Not yet commercially available - Isotope-ratio precision ~0.007% rsd

Thermo Neptune MC-ICP-MS

Nu Instruments MC-ICP-MS

Leco Renaissance ICP-TOFMS

GBC Optimass **ICP-TOFMS**

