
Computation of acceleration from array instance: (a)Computation of acceleration from array instance: (a)

(a) These are repeated for each active array instance (highest priority instance containing the current ion):
 first the active electrostatic array (if any), then the active magnetic array (if any). That is 0, 1, or 2 times.
(+) If no active array instance and sim_segment_global=1, then call within workbench. That is 1 time. (SIMION 8.2 only)
(i) These are repeated for each ion currently being processed. That is one ion or (if Grouped Mode) all ions.

Flow Diagram of SIMION Trajectory Calculations with Locations of User Program Segment Calls

Compute acceleration from ion repulsion (if active).Compute acceleration from ion repulsion (if active).

Call “fast_adjust” for instance (if fast adjustable).Call “fast_adjust” for instance (if fast adjustable).

Compute field from instance; then call “efield_adjust”
or “mfield_adjust” (as appropriate). (+)

Compute field from instance; then call “efield_adjust”
or “mfield_adjust” (as appropriate). (+)

Compute acceleration from field; then call “accel_adjust”.(+)Compute acceleration from field; then call “accel_adjust”.(+)

Apply relativistic correction to total acceleration;
then update ion trajectory.
Apply relativistic correction to total acceleration;
then update ion trajectory.

Single time-step integration:
Loop a few times in step... (i)

Single time-step integration:
Loop a few times in step... (i)

Call “other_actions” (a+) (i)

(and re-call “fast_adjust” (a) (i)

if PE surface update requested).

Call “other_actions” (a+) (i)

(and re-call “fast_adjust” (a) (i)

if PE surface update requested).

Compute proposed time-step; then call “tstep_adjust” (a+) (i).Compute proposed time-step; then call “tstep_adjust” (a+) (i).

Loop for each time-step...Loop for each time-step...

Reset static variables/arrays (in PRG).Reset static variables/arrays (in PRG).

Call “terminate” (a+) for each ion
(after all ions have splatted).
Then call “terminate_run” once.

Call “terminate” (a+) for each ion
(after all ions have splatted).
Then call “terminate_run” once.

Loop for each ion (or execute once for all ions simultaneously if Grouped Mode)...Loop for each ion (or execute once for all ions simultaneously if Grouped Mode)...

Call ”init_p_values” for each fast adjustable array instance.Call ”init_p_values” for each fast adjustable array instance.

Create all ions; then call “initialize” (a) for each ion.Create all ions; then call “initialize” (a) for each ion.

Loop for each run. (Multiple runs are possible in Rerun Mode. This loop may be replaced with a “flym” segment that makes calls to run().)Loop for each run. (Multiple runs are possible in Rerun Mode. This loop may be replaced with a “flym” segment that makes calls to run().)

Compile all user programs; reset adjustable variables.Compile all user programs; reset adjustable variables.

Start Fly'm.Start Fly'm.

End Fly'm.End Fly'm.

Restore potentials and adjustable variables.Restore potentials and adjustable variables.

Call “initialize_run” once. Create all ions. Then call “initialize” (a+) for each ion.Call “initialize_run” once. Create all ions. Then call “initialize” (a+) for each ion.

Compute PA instance; then call “instance_adjust” (a)Compute PA instance; then call “instance_adjust” (a)

(“computation of acceleration” also done here)

	Slide 1

