Space Science

SIMION has usage in the space industry, such as for mass spectrometers and other charge particle optics inside satellites and space probes, as well as applications on Earth. Applications for mass spectrometry occur often: “Since the suprathermal energy ionic charge analyzer (SULEICA), the first spaceborne TOF instrument, was launched on the Active Magnetospheric Particle Tracer Explorers Ion Release Module (AMPTE/IRM) spacecraft in 1984, TOF-MS have flown on almost every mission to a planetary body in our solar system.” [GershmanZurbuchen2010]

Below are some papers and links refering to usages of SIMION in space science.

  • King2008. King, Todd T.; Getty, Stephanie A.; Roman, Patrick A.; Herrero, Federico A.; Jones, Hollis H.; Kahle, Duncan M.; Lynch, Bernard; Suárez, George; Brinckerhoff, William B.; Mahaffy, Paul R. Simulation of a miniature, low-power time-of-flight mass spectrometer for in situ analysis of planetary atmospheres. Proc. SPIE 6959, Micro (MEMS) and Nanotechnologies for Space, Defense, and Security II, 69590E (April 16, 2008). doi:10.1117/12.780113 link – “Mini TOF-MS concept by establishing three-dimensional electrostatic potential array geometries, calculating the electric field of the free space between potential arrays, simulating the flight trajectories of electrons and ions created within the model, and characterizing the end-to-end instrument performance in terms of mass resolution and sensitivity.”
  • Kyle D. Kemble. The Challenges of Characterizing a Wind & Temperature Spectrometer for Space Weather Measurements. Colorado Space Grant Consortium. doi:10.1117/12.780113 link. – Drag & Atmosperic Neutral Density Explorer (DANDE) satelite. “The Wind and Temperature Spectrometer (WTS) on board DANDE makes measurements of the energy spectra and their angular distribution… A full energy spectra is achieved through a Small Deflection Energy Analyzer (SDEA).” Includes SIMION 8.1 simulation of the Small Deflection Energy Analyzer (SDEA).
  • CornishEcelberger2000. Cornish, Timothy J.; Ecelberger, Scott; Brinckerhoff, Will. Miniature time-of-flight mass spectrometer using a flexible circuitboard reflector. Rapid Communications in Mass Spectrometry, volume 14, issue 24, year 2000, pages 2408-2411. doi:10.1002/1097-0231(20001230)14:24<2408::AID-RCM181>3.0.CO;2-K – miniature time-of-flight mass spectrometer for NASA was aided SIMION 8.0 simulation. Carbon nanotube source.
  • BrinckerhoffManagadze2000. Brinckerhoff, W. B.; Managadze, G. G.; McEntire, R. W.; Cheng, A. F.; Green, W. J. Laser time-of-flight mass spectrometry for space. Review of Scientific Instruments, volume 71, issue 2, year 2000, pages 536. doi:10.1063/1.1150237 link – Laser Ablation Mass Spectrometer (LAMS). “A simple, two-dimensional model of LAMS in SIMION has permitted us to test the basic characteristics of proposed ion optical modifications before they are implemented in hardware.”
  • Electron Focusing Lens for a Modulated X-ray Source. 2011 Olin NASA Research Group project for developing electrostatic lens for X-ray source. link – This provides a detailed, day-by-day account of the trial-and-error process of designing, simulating in SIMION, constructing, and testing an Einzel lens. GEM files are included on the Documentation page (Prototype simulation files).
  • GershmanZurbuchen2010. Gershman, Daniel J.; Zurbuchen, Thomas H. Modeling extreme ultraviolet suppression of electrostatic analyzers. Review of Scientific Instruments, volume 81, issue 4, year 2010, pages 045111. doi:10.1063/1.3378685 online. – Novel technique to model extreme ultraviolet (EUV) suppression properties in an electrostatic analyzer (ESA) in SIMION by tracing photons (neutral particles) with photon scattering across surfaces, in a Monte-Carlo manner. Based on the Solar Wind and Suprathermal Ion Composition Experiment (SMS) Experimental (WIND).
  • Li, C, Mg, S Wiens, R. C.; Olinger, C. T.; Reisenfeld, D. B.; Heber, V.; Burnett, D. S. Ion Trajectory Simulations of the Genesis Solar Wind Concentrator. 43rd Lunar and Planetary Science Conference, held March 19-23, 2012 at The Woodlands, Texas. LPI Contribution No. 1659, id.1369 03/2012. link absabs – “The SIMION Concentrator simulations became the primary means for validating the performance of the Concentrator prior to flight… Here we describe the latest simulations for other isotopes that are or may be analyzed in the Concentrator. These include Li, C, Mg, and S.”. Wikipedia:Genesis_(spacecraft). SIMION 8.0.
    • Wiens, R. C.; Olinger, C. T.; Reisenfeld, D. Ion Trajectory Simulations of the Genesis Solar Wind Concentrator Performance. 42nd Lunar and Planetary Science Conference, held March 7-11, 2011 at The Woodlands, Texas. LPI Contribution No. 1608, p.1555. 03/2011. link adsabs – “Here we describe the improvements to the Concentrator simulations, compare the results to measurements made on the Concentrator target, and use these to predict the utility of the Concentrator target for analyses of other elements and isotopes mentioned above.” SIMION 7.0.
    • WiensNeugebauer2003. Wiens, Roger C.; Neugebauer, Marcia; Reisenfeld, Daniel B.; Moses, Jr., Ronald W.; Nordholt, Jane E.; Burnett, Donald S. Genesis Solar Wind Concentrator: Computer Simulations of Performance Under Solar Wind Conditions. Space Science Reviews, volume 105, issue 3/4, year 2003, pages 601-626. doi:10.1023/A:1024474028352 preview The design of the Genesis Solar-Wind Concentrator, for analysis of solar wind, relied heavily on computer simulations, described here. SIMION 7.0 was used to model the Concentrator in 3D with nearly all the components in the actual instrument. Wikipedia:Genesis_(spacecraft).
  • WieserWurz2005. Wieser, M; Wurz, P; Bochsler, P; Moebius, E; Quinn, J; Fuselier, S A; Ghielmetti, A; DeFazio, J N; Stephen, T M; Nemanich, R J. NICE: an instrument for direct mass spectrometric measurement of interstellar neutral gas. Measurement Science and Technology, volume 16, issue 8, year 2005, pages 1667-1676. doi:10.1088/0957-0233/16/8/019 link Neutral Interstellar Composition Experiment (NICE), a neutral particle mass spectrometer dedicated to the measurement of interstellar gas. For the MIDEX spacecraft class of NASA’s Explorer Program.
  • AustinAhrens2002. Austin, Daniel E.; Ahrens, Thomas J.; Beauchamp, J. L. Dustbuster: a compact impact-ionization time-of-flight mass spectrometer for in situ analysis of cosmic dust. Review of Scientific Instruments, volume 73, issue 1, year 2002, pages 185. doi:10.1063/1.1427762 link – Dustbuster is a compact impact-ionization time-of-flight mass spectrometer for in situ analysis of cosmic dust, suitable for use on future deep space missions. “Using SIMION ion trajectory software, numerous computer simulations were performed, both to optimize the design and simulate the performance of the Dustbuster.”
    • Austin, Daniel. “Chapter 2. The Dustbuster: A Compact Time-of-flight Mass Spectrometer for Cosmic Dust Analysis.” Impact-ionization mass spectrometry of cosmic dust. Dissertation (Ph.D.), California Institute of Technology. 2003. link. – more details
    • Austin2003. Austin, Daniel E. Hypervelocity microparticle impact studies using a novel cosmic dust mass spectrometer. Journal of Geophysical Research, volume 108, issue E5, year 2003. doi:10.1029/2002JE001947 link – “Computer simulations of this situation using SIMION ion trajectory software [Dahl, 2000] show that only those ions emitted within 300-400 µm of the target plate would have the correct energy and trajectory to reach the ion detector.”
  • Dr. Erik Syrstad, Dr. James Dyer, Michael Watson, Dr. John Stauder, Dr. Charles Swenson. A Vector Neutral Particle Spectrometer for Space Environment Measurements Space Dynamics Laboratory, Utah State University. The 6th Harsh-Environment Mass Spectrometry Workshop, Cocoa Beach, FL, Sept. 18, 2007. – in situ neutral particle detector for measurements of the neutral atmosphere and orbital environment, with SIMION simulations.
  • Fenn, D.; Herrero, F.; Syrstad, E. A. A New Focus Lens for Improved Energy Resolution in the Wind and Temperature Spectrometer American Geophysical Union, Fall Meeting 2010, abstract #SA11A-1574. 12/2010. adsabs – Tapered Quad Deflector (TQD). Related to Wind and Temperature Spectrometer (WATS).
  • Fenn, D.; Syrstad, E. A.; Dyer, J. S.; Vancil, B.; Roman, P.; Jones, H.; Herrero, F.; Finne, T. T.; Nicholas, A. C. Experimental and Theoretical Characterization of the ANDE Wind and Temperature Spectrometer (WATS) American Geophysical Union, Fall Meeting 2009, abstract #SA23A-1463. 12/2009 – “ion trajectory simulations (SIMION 3D) to characterize the operational parameters and performance of the crossed SDEA pair”. Related to Wind and Temperature Spectrometer (WATS).
  • SramaSrowig2005. Srama, R.; Srowig, A.; Rachev, M.; Grün, E.; Kempf, S.; Moragas-Klostermeyer, G.; Srowig, A.; Conlon, T.; Harris, D.; Grün, E.; Auer, S.; Glasmachers, A.; Helfert, S.; Linnemann, H.; Tschernjawski, V. Development of an Advanced Dust Telescope. year 2005, pages 211-220 doi:10.1007/1-4020-5075-5_22 – “Dust particles’ trajectories are determined by the measurement of the electric signals that are induced when a charged grain flies through a position-sensitive electrode system… SIMION simulations show that a mass resolution of M/DeltaM>150 can be obtained.”
  • RachevSrama2004. Rachev, Mikhail; Srama, Ralf; Srowig, Andre; Grün, Eberhard. Large area mass analyzer. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, volume 535, issue 1-2, year 2004, pages 162-164 doi:10.1016/j.nima.2004.07.121 – Large Area Mass Analyzer (LAMA) for in situ chemical analysis of dust particles. The TOF MS design was optimized using SIMION 7.0.
    • SternovskyAmyx2007. Sternovsky, Z.; Amyx, K.; Bano, G.; Landgraf, M.; Horanyi, M.; Knappmiller, S.; Robertson, S.; Grün, E.; Srama, R.; Auer, S. Large area mass analyzer instrument for the chemical analysis of interstellar dust particles. Review of Scientific Instruments, volume 78, issue 1, year 2007, pages 014501. doi:10.1063/1.2431089
    • Srama, R., Rachev, M., Srowig, A., Kempf, S., Moragas-Klostermeyer, G., Kruger, H. Dust Astronomy with a Dust Telescope. Proceedings of the 37th ESLAB Symposium ‘Tools and Technologies for Future Planetary Exploration’, Noordwijk, The Netherlands (ESA SP-543, April 2004). Editor: B. Battrick, p.73-78 link – developed in SIMION.
    • Mikhail Rashev. A new Time-of-Flight Spectrometer for Impact Generated Ions. Dissertation submitted to the Combined Faculties of Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences. 2005. link – TOF-MS Large Area Dust Mass Analyzer, with various SIMION simulations.
  • Cosmic dust Reflectron for Isotopic Analysis. CRIA Project Summary. link “The CRIA design inherits the geometrical configuration of LAMA… CRIA ion optics are designed using the SIMION package.”
  • Zoltan Sternovsky. The Lunar Dust EXperiment (LDEX) for LADEE or How to design a dust detector. (slides) Laboratory for Atmospheric and Space Physics (LASP) & Aerospace Engineering Sciences Department, University of Colorado. Oct 2009. link – with SIMION simulation
  • J. Vaverka, Z. Nˇemeˇcek, L. Pˇrech, J. Safr´ankov´a, and A. Kom´arek. Calibration of Faraday Cups used on the Spectr-R Spacecraft for Monitoring the Solar Wind. Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic. link – SIMION 8.0 used to model Faraday cups and their interaction with the solar wind. For BMSW instrument onboard the Spectr-R spacecraft.
  • GlavinMalespin2012. Glavin, D. P.; Malespin, C.; ten Kate, Inge L.; Getty, S. A.; Holmes, V. E.; Mumm, E.; Franz, H. B.; Noreiga, M.; Dobson, N.; Southard, A. E.; Feng, S. H.; Kotecki, C. A.; Dworkin, J. P.; Swindle, T. D.; Bleacher, J. E.; Rice, J. W.; Mahaffy, P. R. Volatile Analysis by Pyrolysis of Regolith for planetary resource exploration. 2012, pages 1-11. doi:10.1109/AERO.2012.6187065 link TOF-MS with carbon nanotube ion source simulated in SIMION.
  • Jason A. Gilbert. Planetary Pickup Ion Composition Spectrometer (PICSpec). (poster) Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan. link. “The Pickup Ion Composition Spectrometer uses a large-gap electrostatic analyzer and position-sensitive time-of-flight to make improved measurements of the energy and velocity distributions of planetary and cometary pickup ions.”
  • Ohashi, H.; Hamabe, Y.; Kawamura, T.; Sasaki, S.; Nogami, K.; Hasegawa, S.; Shibata, H. Performance of a curved potential dust TOF mass spectrometer. Proceedings of Asteroids, Comets, Meteors - ACM 2002. International Conference, 29 July - 2 August 2002, Berlin, Germany. Ed. Barbara Warmbein. ESA SP-500. Noordwijk, Netherlands: ESA Publications Division, ISBN 92-9092-810-7, 2002, p. 99 - 101. link – “Three different types (linear, parallel and curved potential) of TOF-MS… are modeled in SIMION.”
  • Robert Bedington, Dhiren Kataria & Alan Smith. Towards a miniaturised plasma analyser. (poster) Mullard Space Science Laboratory. link Simulating possible geometries in SIMION 8.0. “MSSL has a strong heritage in this field, having been involved with conventional electrostatic plasma analysers for missions including Giotto, Cluster, Doublestar, Cassini, Mars96, Mars and Venus Express.”
    • Robert Bedington, Dhiren Kataria, Alan Smith, Steven Eckersley. Development of a Highly Miniaturised Low Resource Plasma Analyzer Suitable for Small Satellite Applications. UCL Mullard Space Science Laboratory; EADS Astrium. link – SIMION and IDL used to analyzer various electrode designs.
  • F. Postberg (1, 2), S. Kempf (3), E. Grün, (3), K. Hand (4), M. Horanyi (3), M. Lankton (3), J.-P. Lebreton (5),J. Schmidt (6), Ralf Srama (1), Z. Sternovsky (3), R. Thissen (7), G. Tobie (8), M. Zolotov (9). Compositional Mapping of the Galilean Moons by Mass Spectrometry of Dust Ejecta. (1) Institute on Space Systems, University of Stuttgart, Germany, (2) Institute for Geosciences, University of Heidelberg, Germany, (3) LASP,University of Colorado, Boulder, United States, (4) JPL, CalTec, Pasadena, USA, (5) LPC2E, Orleans, France, (6) University of Oulu, Finland,(7) IPAC, Grenoble, France, (8) LPGN, Nantes, France, (9) Arizona State University, Tempe, USA. link – “Figure E.1: SUDA function principle. The ion trajectories are the result of SIMION simulation”
  • Evan Copland. Measuring Thermodynamic Properties of Metals and Alloys With Knudsen Effusion Mass Spectrometry. NASA/TP-2010-216795. ATI Allvac, NASA Glenn Research Center. – SIMION 8.0 model of EI ionizer and focusing region for Knudsen effusion mass spectrometer (KEMS), for use in measuring thermionic properties of metals. (Appendix B) link
  • Alexander S. Misharin; Andrey N. Vilkov; Timothy J. Cornish; Theresa Evans-nguyen; Robert J. Cotter; Luann Becker; Vladimir M. Doroshenko. MassTech Inc.; JHU/APL; Johns Hopkins. Mars Organic Molecule Analyzer (MOMA): a Miniature Ion Trap Mass Spectrometer for the Detection of Organics on Mars ASMS2009 poster. MPH 190. Session: Instrumentation: Quadupoles and Traps. – ExoMars rover Mars Organic Molecule Analyzer (MOMA) “includes a laser desorption ion source interfaced to an ion trap mass analyzer.” “SIMION calculations were performed to assess and optimize ion trapping efficiency as a function of ion energy and m/z. Parametric resonance mass scanning was also simulated in SIMION to guide experimental efforts on optimization of the scan function.”
  • Allen L. Victor; Thomas H. Zurbuchen; Alec D. Gallimore. The Top Hat Electric Propulsion Plume Analyzer (TOPAZ): Preliminary Data on the BHT600 Cluster. 41st AIAA/ASME/SAE/ASEE, Joint Propulsion Conference & Exhibit, July 10–13, 2005. link. – Top Hat Electric Propulsion Plume Analyzer (TOPAZ) on the Busek BHT600 Hall thruster cluster. SIMION used to predict the resolutions for TOPAZ. “The final design for the analyzer was determined through an iterative process with SIMION.”
    • VictorZurbuchen2006. Victor, Allen L.; Zurbuchen, Thomas H.; Gallimore, Alec D. Top hat electrostatic analyzer for far-field electric propulsion plume diagnostics. Review of Scientific Instruments, volume 77, issue 1, year 2006, pages 013505. doi:10.1063/1.2165549 – SIMION used to predict characteristics of the analyzer.
    • Allen L. Victor; Thomas Zurbuchen; Alec D. Gallimore. Development of the Top Hat Electric Propulsion Plume Analyzer (TOPAZ): Mass Analyzer Design and Preliminary Calibration Data. Presented at the 29th International Electric Propulsion Conference, Princeton University, October 31 – November 4, 2005. IEPC-2005-016. link
  • STARDUST : NASA’s Comet Sample Return mission. (slides) link – “3D SIMION software was used to simulate, predict transmission and useful yield for the new reflectron time-of-flight (TOF) mass spectrometer”
  • D. McComas, F. Allegrini, F. Bagenal, P. Casey, P. Delamere, D. Demkee, G. Dunn, H. Elliott, J. Hanley, K. Johnson, J. Langle, G. Miller, S. Pope, M. Reno, B. Rodriguez, N. Schwadron, P. Valek, S. Weidner. The Solar Wind Around Pluto (SWAP) Instrument Aboard New Horizons link. – cylindrically symmetric retarding potential analyzer (RPA) with small deflectors, a top-hat analyzer, and a redundant/coincidence detection scheme. SIMION modeling.
  • Envisioning Ions with SIMION. Idaho National Labs. link “Three instruments now hurtling toward Saturn aboard the spacecraft Cassini will analyze cosmic dust and the atmosphere of Titan, Saturn’s largest moon. Dave’s award-winning ion optics simulation program, SIMION for the PC, helped design the instruments.”